BMæ6(( °  úúÿúúÿúúÿ2–2–2–2–úúÿúúÿúúÿúúÿúúÿúúÿ–d –d –d –d úúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2–2–2úúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–2–úúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿ2–úúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ2–úúÿ2–2–úúÿúúÿúúÿúúÿúúÿ–2úúÿ–2–2–2úúÿ–2úúÿúúÿúúÿúúÿ2–2–úúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿ–d –d úúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–2–úúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿ–2–2úúÿúúÿúúÿúúÿ2–úúÿ2–2–2–úúÿúúÿúúÿúúÿúúÿ–d úúÿ–d –d –d úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ–2–2úúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿ2–úúÿ2–úúÿ–2úúÿ–2úúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿ2–úúÿ2–úúÿúúÿúúÿúúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ–d úúÿúúÿúúÿúúÿ2–úúÿúúÿúúÿ2–úúÿúúÿúúÿúúÿúúÿ–2úúÿúúÿúúÿ–2úúÿúúÿúúÿúúÿúúÿ2–2–2–2–2–2–úúÿ2–úúÿ–d –d –d –d –d –d –d úúÿúúÿúúÿúúÿ2–2–2–2–2–2–úúÿúúÿúúÿúúÿúúÿ–2–2–2úúÿúúÿúúÿúúÿ